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1. Introduction 

We present here work in progress dealing 
with the ratio of two correlated gamma random 
variables. Rietz [13] and the authors [4] have 
presented discussion of some past work in this 
area. 

David and Fix [3] noted that if X, Y, and 
Z are independent gamma variates with shape para- 
meters a, b, c respectively and common scale 
parameter X, e.g., 

f X(x) > 0, a > 0, > 0, 

then the random variables U - X + Y and 
W = X + Z are bivariate gamma distributed with 
density 

min {u,w} 

f - (ta -1(u- t)b- 1(w -1 

etdt 

In this paper we shall study the distribution 
and moments of 

+ Y 
+ Z 

as an estimator of 

E(X+Y) a+b 
E(X+Z) a+c 

Since the parameter X does not appear in the 
distribution of r' we may henceforth assume 
without loss of generality that - 1. 

The David -Fix formulation of the bivariate 
gamma distribution constrains the correlation 
coefficient, 

p - a/ [(a +b) (a+c)] 1/2, 

to be nonnegative, and thus is somewhat re- 
stricted. We are also examining other bivariate 
gamma distributions (cf. Johnson and Kotz [7]), 
but since most such distributions are defined in 
terms of the bivariate characteristic function, 
the properties of the ratio estimator are more 
difficult to pursue. 

The ratio r' is easily generalized to the 
ratio of sums of gamma variates, 

r* (Xi + Yi)/ E(Xj + Zj), 
i-1 j-1 

(1) 

or the ratio of means, r nr * /m. We assume 
mutual independence of all r.v.'s in (1). If we 
let r'(a, b, c) denote the probability distribu- 
tion of r', it follows that the distribution 
of r is related to that of r' according to 
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n mr ma,mb, nm a+nc , m<n 

(n/m)r'(ña,(m-n)a+mb,nc), m>n 

( / ) '( ( ) ) 

2. Moments of Ratios 

(2) 

The mean and variance of r' are readily 
computed using well -known properties of the gamma 
and inverted gamma distribution: 

E(r') = E[X /(X +Z)] + E(Y) E(X +Z) -1 

= a(a+c) -1 + b(a+c -1) -1, a+c >1. 

If a + c < 1, E(r') is not finite. 

E(r')2 E[X /(X +Z)]2 + 2E(X /(X +Z)] E(X +Z) -1 

E(Y) + E(Y2)E(X +Z) -2, 

hence 

V(r') = a(a +1) 
2 a 1 b + 

(a+c)(a+c +1) -1) 

b2 +b - [E(r')]2, a+c >2. 
(a+c- 1)(a+c -2) 

For the variance to be finite it is required that 
a + c exceed 2. 

Using (2), the moments of r are easily ob- 
tained from those of r': a + nb and m < n 

n(a +c) -1 

E(r)- 

m-n >1 and 
m n(a+c)-1 n 

(n/m)2 ma(ma+l) 2m2ab 

n(a+c)En(a+c)+ .n(a+c)[n(a+c)-1]. 

+ m2b2 ma 
[n(a +c)- +c) -2] [n(a+c) 

+ mb , n(a+c) > 2, m <n. 
n(a +c) -1, 

(n /m)2 + 2a [(n- m)a+mb] 
V(r)= n(a+c)[n(a +c) +1] (a+c) 'n(a+c) -1 

+ [(n- m)a+mbl2 +E(n a+mb3 - 
[n(a +c)- 1][n(a +c) -2 

ra (m- n)a+nb 2i n(a+c))2, 
(a +c) n(a+c) -1 

It is interesting to note that the expected ratio 
does not depend upon the numerator sample size if 
the numerator sample size is not greater than the 
denominator sample size. 



A particular case that has been examined 
in detail is that of identically distributed 
numerator and denominator, and equal sample 
sizes: a+ b= a+ c A, p= a /A, m- n. Then 

E(r) (nA-p)/(nA-1), nA>1 (3) 

and bias of r as an estimator of (a +b) /(a+c) = 1 

is 

Bias (r;l) (1- p) /(nA -1), nA>1 (4) 

Also, 

(p(nAp+l) 2nAP(1-p) 
V(r) nA+l nA-1 + 

nA(1-p) +n2A2(1-p)2 (nA-p)2 

(nA-1)(nA-2) (nA-1)2 ' 

nA>2. (5). 

Many textbooks dealing with sampling theory, 
(see, e.g., Cochran [2]), contain the following 
Taylor Series approximations for the mean and 
variance of r = 

E(r) R 5(x) 

Bias(r;R)= R(1-z1 -pS(X) S(Y)1 

n2 

(6) 

(7) 

V(r) - R2 
S(Y) 8) 

Here R - and Rare the population means 
of Y and X, S(X), and S(Y) are the population 
standard deviations of X and Y, p is the popu- 
lation product moment correlation coefficient 
between X and Y, and f - n /N, the ratio of 

sample to population size. As is well- known, 
the expectation bias can be sizable. 

If we apply (6 -8) to the David -Fix moments 
(3), (5), assuming f - 0, we obtain 

E(r) (n2A - p +l) /n2A (9) 

Bias (r;l) (1 -p) /n2A (10) 

V(r) = 2(1 -p) /n2A (11) 

Comparing the Taylor Series expansion results 
(6-8) with the exact results (9 -11) we see that 
the conventionally -used Taylor Series Approxi- 
mations underestimate the expectation bias and 
variance of r by roughly a multiplicative factor 
of n. 

3. Some Empirical Results 

To illustrate the impact of this under- 
estimation, we present examples for two care- 
fully documented weather modification ex- 
periments, [5], [14]. Barger and Thom [1] and 
others have noted that rainfall data are often 
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well- fitted by the gamma distribution. Meteor- 
ologists often report the efficacy of cloud 
seeding experiments via the use of a double 
ratio, for example, 

area one seeded mean 
DR = 

area two unseeded mean 

area two seeded mean 

area 'one unseeded mean 

the product of two independent ratios of means, 
or its square root (see [9]). Table 1 contains 
the reported square root of double ratio (RDR); 
the RDR with each of the ratios corrected for 
expectation bias using the exact correction (4); 

and the large sample approximation to the vari- 
ance of the product of two independent ratios 
(first reported by J.N.R. Rao[12]) using both 
the Taylor series approximation for V(r), (8), 

and the exact value for V(r), (5). It is seen 
that the RDR corrections are at times appreci- 
able and that the approximate variance of the 
double ratios employing the exact V(r) is much 
larger than if the approximate V(r) had been 
employed. 

In reference to their experience based on 
a considerable number of sampling experiments, 
and using the Taylor Series approximation for 
bias and standard error of r, Kish, Namboodiri, 
and Pillai [8] state, "the ratio of bias of r to 
standard error of r averaged around .01 and 
seldom appears greater than .04 ". In Table 2, 
we have computed the exact bias to standard 
error ratio using the exact moments (3), (5) 

for selected values of p, n and A. The 
selected values are not atypical of rainfall 
data and may be applicable elsewhere. At least 

for those parameter values tabulated, the exact 
bias to standard error ratio is not consistent 
with the Kish et al statement. 

4. Densities 

We have recently begun work on the exact 
probability density of r' (from which the exact 
probability density of r follows). If we let 
V = X /(X +Z) and W = X +Z, the joint density of 
r', V and W is easily shown to be 

g(r',v,w) 
V(a) V(b) 

6(lrv)lc-le 

0 < w 
0 < r' 

0 < v < min 

Then the joint density of r' and v is 



g(r',v) 
C,(a+b+c) 

f(a)C(b)V(c) (l+r'-v)a+b+c 

0<v< min {l,r'} 
< r' 

and the p.d.f. of r' is 

min{l,r'} 
g(r') g(r',v)dv, r' > 0 (12) 

In the case where X, Y, and Z are exponential 
random variables (a =b =c =1), this becomes, 

1 - 1/(r'+1)2, < r' 1 

g (r' ) = 

1/(r')2 - 1/(r'+1)2, r' > 1. 

(13) 

A closed form expression for (12) appears to be 
readily obtainable only for small integral 
values of a, b, c. We have also tried to obtain 
g(r') via an inversion formula in Gurland [6] 

that uses the joint characteristic function of 
X, Y and Z, but the integral in the inversion 
formula has thus far proved elusive. 

Instead, a computer program has been devel- 
oped for the numerical integration needed to 
generate and plot g(r') and the c.d.f. of r'. 
Depending on the parameter values under study, 
a variety of shapes are possible- -some sketches 
of p.d.f.'s appear in Figure 1. These results 
exhibit both unimodal and bimodal densities with 
the possibility of an asymptote at one. 

The main determinant of the shape of g(r') 
is the value of b + c. When b + c > 1, the dis- 
tribution is unimodal and finite for all r' > O. 

If b + c <1, 

g(r') 
r' +1 

Note that in the distribution of r with 
a +b =a +c A, p -a /A, andm =n, b +c 
corresponds to the quantity 2nA(1 -p). 

Figure 1(a) displays the p.d.f. in (13), 

i.e., a b c 1. g(r') has a discontinuous 
derivative at r' - 1. In Figure 1(b), g(r') has 

two inflection points below the modal value 1.30. 
The expected value of both numerator and denom- 
inator is larger for the example in Figure 1(c) 
than in any of the other cases. In the distribu- 
tion of r this would correspond to a large sample 
size if A and p are small. C.R. Rao [11] has 

shown that under rather general conditions, the 

distribution of the ratio of two means is asymp- 
totically normal. This explains the relative 
lack of shewness in 1(c). In Figure 1(d), the 

graph of g(r') is monotonically increasing to 
the left of 1. However, in Figure 1(e), the dis- 
tribution has a mode between 0 and 1. This might 
be viewed by some as a bimodal distribution. 
These results are somewhat similar to the 
findings of Marsaglia [10] that the distribution 
of the ratio of two correlated normal random 
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variables (with his assumed bivariate structure) 
may be bimodal as well as unimodal. 

Needless to say, the distribution of r' and 
probably r is not necessarily well - behaved, and 
the automatic reliance on the Central Limit 
Theorem to assure normality for moderate sized 
samples is highly questionable. Further work is 
under way. 
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Table 1. Environmental Results from Cloud Seeding Experiments. 

Project 

West Quebec 

South Australia 

RDR CRDR 

1960-63 23 .9310 .9154 

1960 6 .9275 .8560 

1961 5 .6801 .6182 

1962 5 1.793 1.695 
1963 7 .8618 .8127 

1957 -59 22 .9525 .9473 
1957 8 .9711 .9563 

1958 9 .9234 .9168 

1959 5 .8836 .8482 

AVDR1 AVDR2 

.0022 .0566 

.0008 .0174 

Key: 
RDR = square root of product of two independent ratios 

CRDR = RDR with each of ratios corrected for expectation bias using (1 - p) /(nA - 1) 

AVDR1 = large sample approximation to variance of product of two independent ratios, [12], 
inserting V(r) = 2(1 - p) /n A in the approximation 

AVDR2 = same as AVDR1 except using exact value for V(r) 

Table 2. Relative Bias of r 
Values of p, n, A 

for Selected 

n A bias /a 

.00 10 .25 0.224 

.00 10 2.0 0.152 

.00 50 .25 0.187 

.00 50 2.0 0.0702 

.50 10 .25 0.188 

.50 10 2.0 0.110 

.50 50 .25 0.137 

.50 50 2.0 0.0505 

.95 10 .25 0.0756 

.95 10 2.0 0.0358 

.95 50 .25 0.0454 

.95 50 2.0 0.0158 

(a)b+c>1 
p 0.50 

2.00 
X(X+Z) 2.00 

1.30 
(b) b+c > 

0.50 
8(X+Y) 2.00 
E(X+Z) 1.00 

0.90 
(c) b+c 1 

-0.50 
8(X+Y) 8.00 
X(X+Z) 8.00 

1.00 
(d) b+c 1 

p 0.75 
E(X+Y) 2.00 
80(+Z) 2.00 

1.00 

(a) b+c 1 

p 0.75 

8(X+Y) 0.50 
E(X+Z) 0.50 

Figure 1. Selected Sketches of Computer Plots of g(r') 
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